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ABSTRACT

This paper presents a rover execution architecture for
controlling multiple, cooperating rovers.  The overall
goal of this architecture is to coordinate multiple rovers
in performing complex tasks for planetary science.  This
architecture integrates a number of systems and research
efforts on single rovers and extends them for multiple
rover operations.  Techniques from a number of different
fields are utilized, including AI planning and scheduling,
real-time systems and simulation, terrain modeling, and
AI machine learning.  In this paper, we discuss each
architecture component, describe how components
interact and present the geological scenario we are using
to evaluate the overall architecture.

1. INTRODUCTION

This paper describes an integrated architecture being
developed at the NASA Jet Propulsion Laboratory for
solving planetary surface exploration problems though
the utilization of multiple cooperating rovers. Utilizing
multiple rovers for science and exploration activities has
a number of advantages. First, we can greatly increase
mission science return by simultaneously using
complementary instruments on different rovers and
efficiently dividing science-gathering tasks between the
rovers.  Second, multiple rovers can perform tasks that
otherwise would not be possible using a single rover,
such as taking wide baseline stereo images. Third,
multiple rovers would enhance mission success through
increased system redundancy.  If one rover fails, then its
tasks could be quickly taken over by another rover,
helping to ensure mission success.

This paper presents work in demonstrating how multiple
rovers as compared to a single rover can more effectively
explore a selected site and return more science data per
communication cycle. The described architecture utilizes
research results on single rovers (i.e. command sequence
generation, navigation, control, science operations,

ground control, etc.) and extends them to multiple rovers.
An integrated system architecture has been developed
that can automatically generate interesting science goals,
plan for and coordinate multiple rover activities, and
monitor and update activities in response to anomalous
events.  This architecture also utilizes a multi-rover
simulation environment and control software from the
NASA JPL Rocky 7 rover [Volpe et al., 1997].
Techniques from several different fields are combined
including Artificial Intelligence (AI) planning and
scheduling, real-time systems and simulation, terrain
modeling and system kinematics/ dynamics, and AI
machine learning.

The organization of this architecture consists of the
following.  An AI planning and scheduling system
(CASPER) takes as input a set of science goals for
exploring a particular terrain and then automatically
generates plans (i.e. command sequences) that coordinate
a team of rovers in successfully completing the goals and
exploring the requested areas.  Each rover plan is then
relayed to the onboard control software and executed in a
multi-rover simulation environment (ROAMS) that is
used to simulate the rover terrain and rover operations
within that environment.  The simulator also generates
sensor feedback from the rovers which is relayed back to
the planner. This feedback is utilized to determine the
success or failure of certain activities and any changes in
resources or states.  If unexpected changes have occurred,
the planning system can perform re-planning to fix the
original plan and ensure the successful achievement of
the goals.  An AI clustering algorithm analyzes any
science data gathered by the rovers and then uses this
analysis to produce new science goals for the rovers to
accomplish. This architecture is currently being
evaluated using a geological scenario where rovers are
used to examine and classify terrain rocks.

The remainder of this paper is organized as follows.  We
begin by characterizing the multiple cooperating rovers
application domain and describing the particular science



scenario we are using to evaluate our integrated system.
Next, we present out multi-rover execution architecture
which controls and coordinates operations for a team of
rovers.  We then describe each of its individual
components and any interactions between them.  In the
final sections, we discuss related work, planned future
work, and present our conclusions.

2. COOPERATING ROVERS FOR SCIENCE

Utilizing multiple rovers on planetary science missions
has several important advantages:

• Force multiplication. Multiple rovers can collect
more data than a single rover and can perform
certain types of tasks more quickly than a single
rover, such as: performing a geological survey of a
region or deploying a network of seismographic
instruments. We call these cooperative tasks.

• Simultaneous presence. Multiple rovers can perform
tasks that are impossible for a single rover. We call
these coordinated tasks. Certain types of
instruments, such as interferometers, require
simultaneous presence at different locations. Rovers
landed at different locations can cover areas with
impassable boundaries. Using communication relays,
a line of rovers can reach longer distances without
loss of contact. More complicated coordinated tasks
can also be accomplished, such as those involved in
hardware construction or repair.

• System redundancy. Multiple rovers can be used to
enhance mission success through increased system
redundancy. Several rovers with the same capability
may have higher acceptable risk levels, allowing one
rover, for example, to venture farther despite the
possibility of not returning.  Also, because designing
a single rover to survive a harsh environment for
long periods of time can be difficult, using multiple
rovers may enable missions that a single rover could
not survive long enough to accomplish.

In all cases, the rovers can behave in a cooperative or
even coordinated fashion, accepting goals for the team,
performing group tasks and sharing acquired
information.

Coordinating distributed rovers for a mission to Mars or
other planet introduces some interesting new challenges
for the supporting technology.  Issues arise concerning
interfaces, communication, control and individual on-
board capabilities.  For example, different software
components must successfully interface onboard the
rovers to provide the needed autonomous functionality.
In addition, mission designers will need to decide on
interfaces among the rovers, to the lander and/or orbiter
and to the ground operations teams.  Decisions will need
to be made on communication capabilities, which will
limit the amount of information shared between rovers

and the lander/orbiter.  A distributed control protocol
will need to be selected that defines how tasks are
distributed among rovers and the “chain of command”
for the rovers.  Finally, the onboard capabilities will need
to be considered, including computing power and
onboard data-storage capacity.

Many of these design decisions are related, and all of
them have an impact on the onboard technologies that
can be utilized by the mission.  The interfaces determine
what activities can be planned for each rover and what
data or sensor feedback can be utilized by the onboard
software.  The amount of communication available will
determine how much science or terrain data can be
shared among rovers and will affect how much each
rover can coordinate with other rovers to perform tasks.
In addition, communication capabilities will affect the
amount of onboard autonomy required. If bandwidth is
low and reaction time is critical, a rover will need to
react intelligently to the environment, including
performing autonomous navigation and replanning for its
own activities in response to unexpected events.  The
control scheme will determine which rover executes
which activities and which rovers coordinate and monitor
activities of the others.  Decisions on the onboard
capabilities of each rover limit the independence of the
rover.  With little computing power, a rover may only be
able to execute commands.  More power may allow it to
plan command sequences, replan if necessary, and
analyze gathered data.  Some rovers may also perform
these activities as a service to other rovers or in
cooperation with them.

To evaluate the architecture presented in this paper, we
have initially chosen the configuration of a team of three
rovers where each rover has a planning and data-analysis
tool onboard as well as low-level control software for
tasks such as navigation and vision.  Each rover can thus
plan for its assigned goals, execute and monitor
generated commands, collect the required data, perform
re-planning if necessary, and perform science analysis
onboard to direct its future goals.

Currently we are evaluating our framework by testing its
ability to build a model of the distribution of surrounding
terrain rocks, classified according to composition as
measured by a boresighted spectrometer.  Science goals
consist of requests to take spectral measurements at
certain locations or regions.  These goals are prioritized
so that, if necessary, low priority goals can be preempted
(e.g., due to low battery power).  Science goals are
divided among the three rovers.  Each rover is identical
and is assumed to have a spectrometer onboard as well as
other resources including a solar panel that provides



power for rover activities and a battery that provides
backup power when solar power is not available.  The

battery can also be recharged using the solar panel when
possible.  Collected science data can be transferred to an
orbiter where it is stored in memory.

3.  MULTI-ROVER EXECUTION ARCHITECTURE

The overall system architecture is shown in Figure 1.
The system is comprised of the following major
components:

• Planning: A dynamic, distributed planning system
that produces rover-operation plans to achieve input
rover-science goals.  Planning is divided between a
central planner, which efficiently divides up science
goals among rovers, and a distributed set of
planners, which plan for operations on individual
rovers and can perform re-planning if necessary.

• Rover Control Software: Control software from the
NASA JPL Rocky 7 rover that handles execution of
low-level rover commands in the areas of navigation,
vision and manipulation.  This software performs
low-level monitoring and control of each rover’s
subsystems.

• Multi-Rover Real-Time Simulator:  A multi-rover
simulation environment that is used to simulate the
planetary terrain and rover hardware operations
within that environment.  This simulator models

rover kinematics and generates sensor feedback
which is relayed back to each rover planner.

• Data Analysis: A distributed machine-learning
system which performs unsupervised clustering to
model the distribution of rock types observed by the
rovers.  This distribution is also used for prioritizing
new targets for exploration by the rovers.

• Science Simulator: A multi-rover science simulator
that models different geological environments and
rover science activities within them. The science
simulator manages science data for the current
terrain, tracks rover operations within that terrain,
and reflects readings by rover science instruments.

The overall system operates in a closed-loop fashion.
Science goals (e.g., a spectrometer reading at a certain
location) are given to a central planner which assigns
them to individual rovers in a fashion that will most
efficiently serve the requests.  Each rover planner then
produces a set of actions for that rover which will achieve
as many of its assigned goals as possible.  These action
sequences are executed using the rover low-level control
software and a multi-rover hardware simulation
environment which relay action and state updates back to
each onboard planner.  If necessary, each onboard
planner can perform re-planning when unexpected events
or failures occur.

Action sequences are also executed within the science
simulator and any gathered data is sent to the rover data-
analysis modules.  These modules form local models of
the observed data that are broadcast to the central
analysis module.  This module forms a global rock-
distribution model and generates a new set of
observations goals that will further improve the accuracy
of the model.  In this way, the data analysis system can
be seen to take the role of the scientist driving the
exploration process.  New science goals are then sent to
the centralized planner and the overall cycle continues
until enough data is gathered to produce distinct models
for any observed rock types.

In the next few sections, we discuss each of the
architecture components in more detail.

3.1 DISTRIBUTED, CONTINUOUS PLANNING

To produce individual rover plans for a team of rovers,
we have developed a distributed planning environment
utilizing the CASPER planning system [Chien et al.,
1999]. CASPER (Continuous Activity Scheduling,
Planning, Execution and Replanning) is an extended
version of the ASPEN system [Fukanaga et al., 1997]
that has been developed to address dynamic planning and
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Figure 1: Multi-rover Execution Architecture



scheduling applications.  CASPER employs techniques
from AI planning and scheduling to automatically
generate the necessary rover-activity sequence to achieve
the input goals.  This sequence is produced by utilizing
an iterative repair algorithm [Minton and Johnston,
1988; Zweben, et al., 1994] which classifies conflicts and
attacks them each individually.  Conflicts occur when a
plan constraint has been violated where this constraint

could be temporal or involve a resource, state or activity
parameter.  Conflicts are resolved by performing one or
more schedule modifications such as moving, adding or
deleting an activity.  Examples of conflicts include a
rover that is at the incorrect location for a scheduled
science activity or having too many activities scheduled
for one rover, which oversubscribes its power resources.
Figure 2 shows an example rover-plan displayed in the
CASPER GUI.

To support missions with multiple rovers, we developed a
distributed planning environment where it i s assumed
each rover has an onboard planner.  This allows rovers to
plan for themselves and/or for other rovers.  And, by
balancing the workload, distributed planning can be
helpful when individual computing resources are limited.
Our approach to this task was to include a CASPER
continuous planner for each rover, in addition to a
central, batch planner.

The central planner develops an abstract plan for all
rovers, while each agent planner develops a detailed
executable plan for its own activities.  The central
planner also acts as a router, taking a global set of
science goals and dividing it up among the separate
rovers.  For example, a science goal may request an
image of a particular rock without concern for which
rover acquires the image.  The central planner could

assign this goal to the rover that is closest to the rock in
order to minimize the traversals of all rovers.  This
master/slave approach is just one approach to distributed
planning which could be utilized for this architecture; we
are also experimenting with several other forms of
distributed planning for this task [Rabideau, et al., 1999].

In order to enhance the quality of the produced
schedules, we have implemented heuristics for assigning
rovers to goals and for deciding on the order in which to
visit each of the specified locations.  The heuristics
borrow from algorithms for finding solutions to the
Multiple Traveling Salesman Problem (MTSP) [Johnson
et al., 1997].  With multiple rovers covering the same
area, the planner prefers paths that minimize the total
traverse time of all the rovers.

To achieve a high level of responsiveness for each
onboard rover planner, we also utilize a continuous
planning approach.  Rather than considering planning a
batch process in which a planner is presented with goals
and an initial state, each rover planner has a current goal
set, a current state, a current plan, and state projections
into the future for that plan.  At any time, an incremental
update to the goals or current state may update the
current plan.  This update may be an unexpected event or
simply time progressing forward.  Each onboard planner
is then responsible for maintaining a plan consistent with
the most current information obtained from the rover
sensors and low-level control software.  The current plan
is the planner’s estimation as to what it expects to
happen in the world if things go as expected.  However,
since things rarely go exactly as expected, the planner
stands ready to continually modify the plan to bring it
back into sync with the actual rover state.

3.2 ROVER CONTROL SOFTWARE

To handle low-level rover control issues, we utilize the
Onboard Rover Control & Autonomy Architecture
(ORCAA) software developed for the NASA JPL Rocky 7
rover [Volpe et al., 1997, Hayati & Arvidson, 1997].  In
the ORCAA software, asynchronous rover activities are
initiated by a queue of rover commands.  These activities
are represented using asynchronous finite state machines
(FSMs) and synchronous data-flow control loops. When
the rover receives a command sequence, these commands
cause state transitions in one of three main state
machines: Navigation, Vision and Manipulation.  For
example, in the Navigation FSM, possible states include
“Idling”, “Steering”, “Driving”, etc. State transitions in
these FSMs are used to run different execution methods
and are often used to begin the execution of synchronous

Figure 2: Example Rover Plan



processes, which perform monitoring and control of the
rover’s subsystems.

This software also relays sensor information and
command updates back to the overlying planning system.
This information includes command updates such as
whether a command was successfully executed and
sensor values such as the current sun angle or level of
battery power.

3.3 MULTI-ROVER REAL-TIME SIMULATION

In order to accomplish preliminary testing of this
architecture, a real-time simulation environment has
been developed using the DARTS/Dshell software
[Biesiadecki, et al., 1997].  The Rover Analysis Modeling
and Simulation (ROAMS) [Yen et al., 1999] extension of
DARTS/Dshell was first slated towards modeling single-
rover operations and is based on the Rocky 7 Mars rover.
Currently, the simulator rover model is comprised of its
mechanical, electrical, and sensor subsystems, and is
connected with the on-board (Rocky 7) software. Several
terrain models have been incorporated and we have
developed solution techniques that permit a real-time
simulation of the rover traversing a Mars-like terrain on
a workstation platform.

The basic component of the simulator is the solution of
inverse kinematics for the rover traversing a Mars-like
terrain.  Building on this novel solution technique, we
have applied the ROAMS rover simulator to testing the
Rocky 7 on-board software. The control and navigation
algorithms of the control software are used to drive the
Rocky 7 rover model against a terrain with randomly
distributed rocks.  Applying the DARTS/Dshell
methodology, we implemented models for hardware
devices, such as a panoramic spectrometer, sun sensor,
tilt sensor, obstacle detection camera, solar panel, battery,
etc., to feed the subsystems. Also, based on the numerical
solution of inverse kinematics, the hardware instrument
models provide high-fidelity synthetic data to test the
control and navigation code. Overall, this environment
permits a fast and better design and implementation of
the rover's software subsystem.

For the multiple rover architecture, this single-rover
simulation model has been extended to support several
cooperating rovers. An example situation involving three
rovers is shown in the ROAMS interface in Figure 3.
For use with this architecture, we developed additional
hardware models, including a collision avoidance model,
an obstacle detection model, models of power units, and
the capability for running multiple rovers in ROAMS.
Due to the stability and accuracy of the numerical

solution, these device models can provide high quality
sample data for the control software and ultimately the
planning system.  For example, the power source of
Rocky 7, including a solar panel and a battery, can
produce accurate reading of the power level due to the
prediction of the panel's attitude and the wheel's motor
output. As explained above, these and other sensor values

can be fed back to each rover planner so that a valid
command sequence can be consistently maintained for
each rover.

3.5 SCIENCE-DATA  ANALYSIS

To perform science analysis, we use a machine-learning
system which performs unsupervised clustering to model
the distribution of rock types in the observed terrain
[Estlin, et al., 1999].  Clustering is performed by a
distributed algorithm where each rover alternates
between independently performing learning
computations using its local data and updating a global-
distribution model through communication among
rovers.  The model used for this distribution is a simple
K-means-like unsupervised clustering model, where each
cluster represent a different rock type in the sensor space.
Currently, each sensor reading is a spectral measurement
returning values at 14 wavelengths; learning takes place
in the full 14-dimensional continuous space.   A sample
cluster model (shown for 2 of 14 dimensions) is shown in
Figure 4.

After a new set of science readings is acquired, each
rover sends a small set of parameters, which summarizes
its local data, to the central clusterer.  The central
module then integrates this data into an updated global
model and broadcasts that model to all rovers in the
system.  This process continues iteratively until
convergence.

Figure 3: Three rovers in sample terrain



Output clusters are also used to help evaluate visible
surfaces for further observation based upon their
“scientific interest.”  Specifically, the system tries to
increase the accuracy of the clustering model by
obtaining data readings in regions that are likely to
improve the model.  Each update of the global clustering
model determines a new set of interesting science goals,
i.e. planetary locations to be explored by the rovers.

These observation goals are then sent as formal goals by
the learner to the planner.  Thus, the science analysis
system can be viewed as driving the science process by
analyzing the current data set and then deciding what
new and interesting observations should be made.

3.5 SCIENCE SIMULATOR

A science simulator designed for this particular
geological scenario provides data for the science-analysis
system by simulating the data-gathering activities of the
rover. Different Martian rockscapes are created for use in
the simulator by using distributions over rock types, sizes
and locations.  The size and spatial distributions of the
rockfield were developed by examining distributions of
rocks observed by the Viking Landers, Mars Lander and
Mark Pathfinder. The distribution of minerals that can
occur in rocks was developed in collaboration with
planetary geologists at JPL, and the spectra associated
with rocks are generated from the spectra of the
component minerals via a linear-mixing model. When
science measurements are requested from a terrain
during execution, rock and mineral spectral models are
used to generate sample spectra based on the type of rock

being observed.  This data is then communicated to the
relevant rover data-analysis module.

4. RELATED WORK

While there has been a significant amount of work on
cooperating robots, most of it focuses on behavioral
approaches that do not explicitly reason about assigning
goals and planning courses of action.  One exception is
GRAMMPS [Bummitt and Stentz, 1988], which
coordinates multiple mobile robots visiting locations in
cluttered, partially known environments.  GRAMMPS
also has a low-level planner on each robot, however it
does not look at multiple resources or exogenous events.
It also does not utilize a learning system to analyze
gathered data and deduce new goals.

Many cooperative robot systems utilize reactive planning
techniques [Mataric, 1995; Parker, 1999].  These systems
have been shown to exhibit low-level cooperative
behavior in both known and “noisy” environments.
However, these systems have not been shown useful for
mission planning where a high-level set of science and
engineering goals must be achieved in an efficient
manner.

The idea of having a scientific-discovery system direct
future experiments is present is a number of other
systems [Rajamoney, 1990; Nordhausen and Langley,
1993], however none of these have been utilized for
multiple-robot scenarios. In our architecture, the data-
analysis system is integrated with a planning system and
real-time simulator, which plan and execute detailed
activity sequences needed to perform each experiment.
The data-analysis system also directly interacts with the
environment and is specialized to problems and scenarios
in planetary science.

5. FUTURE WORK

We have a number of planned extensions to this work.
First, we intend to extend the overall architecture to be
more robust and able to handle rover failure situations.
For instance, if a rover fails, the distributed planning
system should recognize this failure (e.g., the rover has
not responded for a certain amount of time), refrain from
sending any new goals to that rover, and re-assign any
current goals assigned to that rover.

Another important addition is to integrate the Envelope
Learning and Monitoring using Error Relaxation
(ELMER) system [Decoste, 1997] to model rover-
resource use such as battery power or onboard memory.
ELMER uses statistical machine-learning techniques to

Figure 4: Example spectra-feature space



learn and refine input-conditional limit functions from
historic and/or simulated data.  These limit functions
define context-sensitive upper and lower boundaries,
within which future resource-data is expected to fall.
This system will enable more accurate resource
modeling, which can be used by the planner to better
estimate future resource levels.

We also plan to increase the fidelity of the simulation by
adding models of onboard cameras and other
instruments, and extending the simulator to model
communication between each rover.  Currently, it i s
assumed rovers share science data through the central
data-analysis model, however this communication is not
explicitly represented in the simulator. We would also
like rovers to share plan information, which would allow
them to directly coordinate with each other during plan
execution and would allow us to experiment with
different forms of distributed planning that require
communication among agents [Tambe, 1997; Sandholm,
1993].

Last, we plan on testing the overall architecture in a
more realistic setting using actual rovers as opposed to
the hardware and science simulators described
previously.  This testing will occur in the JPL Mars yard
and/or in outside field tests using rovers such as JPL’s
Rocky 7 and Rocky 8.

6. CONCLUSION

In conclusion, using multiple rovers can greatly increase
the capabilities and science return of a mission. In this
paper we have presented an integrated architecture that
combines techniques from several fields to effectively
plan for and coordinate rover activities, execute these
activities in a real-time environment simulator, monitor
rover-execution status, and effectively respond to
unexpected events through re-planning. This integrated
system exhibits great potential for advanced applications
in areas of design, engineering, and distributed planning
for mobile robotic systems.
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